

TRK-10-005 Status Update

Yanyan Gao (Fermilab)

for TRK-10-005 Analysts

Track IP Resolutions

Track Impact Parameter Resolutions

 Track IP resolutions can be extracted from IP(pvtx position) by unfolding the vertex resolution in a data-driven way

d0_{meas} = d0_{true} ⊕ "vertex smearing" ⊕ "track impact parameter resolution"

- This method can be validated in MC by comparing the results to the results obtained via MC-truth method (reco-sim)
- Details given at this talk by Boris Mangano

http://indico.cern.ch/getFile.py/access?contribId=3&resId=1&materiaIId=slides&confId=84502

Method Validation on MC (1/2)

IP resolutions vs eta, with pT>0.8 GeV

•

Method Validation on MC (2/2)

IP resolutions vs pT

 The pT range can be extended by running on the un-prescaled data skim

Data-Driven Results on Data/MC (1/2)

• IP resolutions vs eta with pT>0.8 GeV (to be included in PAS)

• The discrepancies at high |eta| region could be due to the data/MC difference in material or mis-alignment

Data-Driven Results on Data/MC (2/2)

IP resolutions vs pT (to be included in PAS)

 The last a few bins will be improved with more statistics and selecting hard interaction trigger bits (JET6?)

Primary Vertex Resonstruction: Resolution and PileUp

Primary Vertex Resolution X vs nTrack

Strong dependence on the pT of the vertex in the low end

- In the high nTrack region, the data resolution is slighter larger than MC
- This difference is due to the data/MC difference in the track pT (slide X)
- Plots to be included in PAS

Average Track pT in Vertex

pT difference drives the data/MC discrepancy in the tail in Res

Primary Vertex Resolution Y vs nTrack

Strong dependence on the pT of the vertex in the low end

- In the high nTrack region, the data resolution is slighter larger than MC
- This difference is due to the data/MC difference in the track pT (slide X)
- Plots to be included in PAS

Primary Vertex Resolution Z vs nTrack

Strong dependence on the pT of the vertex in the low end

- In the high nTrack region, the data resolution is slighter larger than MC
- This difference is due to the data/MC difference in the track pT
- Plots to be included in PAS

Primary Vertex Pull X vs nTrack

• Pull has an average of \sim 0.9, indicating the error is overestimated

Plots to be included in PAS

Primary Vertex Pull Y vs nTrack

• Pull has an average of ~ 0.9, indicating the error is overestimated

Plots to be included in PAS

Primary Vertex Pull Z vs nTrack

• Pull has an average of ~ 0.9, indicating the error is overestimated

Plots to be included in PAS

Pile Up Estimation

- Given > I vertices reconstructed, how often do they represent genuine PUs rather than fake vertices from splitting?
- Exploit the z-correlation of vertex pairs
 - Genuine PU vertex pairs are uncorrelated in z

$$\exp\left[-\frac{1}{2}\frac{z_1^2}{\sigma_z^2}\right] \exp\left[-\frac{1}{2}\frac{z_2^2}{\sigma_z^2}\right] = \exp\left[-\frac{1}{2}\frac{(z_1 - z_2)^2}{(\sqrt{2}\sigma_z)^2}\right] \exp\left[-\frac{1}{2}\frac{\bar{z}^2}{(\sqrt{1/2}\sigma_z)^2}\right]$$

• Split vertex pairs have $zI \sim z2$, (zI+z2)/2 with width sigmaZ (BS)

Wolfram Erdmann

PileUp Estimation

- Given > I vertices reconstructed, how often do they represent genuine PUs rather than fake vertices from splitting?
- Exploit the z-correlation of vertex pairs
 - Genuine PU vertex pairs are uncorrelated in z (slide X)

$$\exp\left[-\frac{1}{2}\frac{z_1^2}{\sigma_z^2}\right] \exp\left[-\frac{1}{2}\frac{z_2^2}{\sigma_z^2}\right] = \exp\left[-\frac{1}{2}\frac{(z_1 - z_2)^2}{(\sqrt{2}\sigma_z)^2}\right] \exp\left[-\frac{1}{2}\frac{\bar{z}^2}{(\sqrt{1/2}\sigma_z)^2}\right]$$

Split vertex pairs have zI~ z2, (zI+z2)/2 with width sigmaZ (BS)

Details in this doc by Wolfram Erdmann: https://twiki.cern.ch/twiki/pub/CMS/TRK10005/pileup.pdf

PileUp - Lower Vertex Ndof Distribution

- Data is well represented by MC without PileUp
 - Expectation shape derived from inclusive ndof distribution
 - MC fake is normalized according to?

BeamSpot: Transverse Beam Width

- Transverse beam width obtained by two methods
 - likelihood fit: using impact parameter correlations
 - Vertex-3D Fit for X and Y

Similar plots for X/Y/Z/Slope are on the way

Next Steps

- In general, repeat the studies on the ICHEP dataset/release
 - Are we going to abandon GOODCOLL? If so, what is the state of art?
- Track IP Resolution
 - Complete the resolution vs phi
 - Compare the measured resolution with the error from the track fit
 - Extend pT range with the un-prescaled trigger dataset
- Primary Vertex Reconstruction
 - Repeat the resolution/efficiency studies with un-prescaled trigger dataset
 - Estimate the pile up rate
- BeamSpot
 - Converge and understand the plots to be included

Backup Slides

The Two-Vertex Method

- The algorithm has been approved in TRK-10-001
 - ullet Primary vertex resolutions depend on nTracks used and their $< p_T >$
 - Data-driven "two-vertex" method to measure primary vertex resolution

- 1. Split tracks into two independent sets
- 2. Run PrimaryVertexProducer (offlinePrimaryVertices) on each trackset
- 3. Compare the two fitted vertex positions and calculate
 - Resolution: of the gaussian fit to $\frac{x_1-x_2}{\sqrt{2}}$
 - Pull: of the gaussian fit to $\frac{x_1-x_2}{\sqrt{\sigma x_1^2+\sigma x_2^2}}$
- To estimate the effect from track pT, the procedure is repeated with different average pT Ranges

BeamSpot

Reminder: Beam Spot Monitoring

	online beam spot:		
		Beamline position estimated in the online DQM.	
		Two methods (DQM modules): full tracking, and pixel tracks.	
		Results in ~real time (2-3 min): fit lumi-by-lumi. Independent results every 5 lumi sections.	
		Results are send to DIP(LHC), and also injected into raw data via the scalars.	
		Beam spot scalars are being used for express and prompt reconstruction, and will be used also in HLT.	
		This monitoring tools has been shown to be very stable and useful to monitor beam position during data taking.	
pr.	offline beam spot:		
		Use express Alcareco samples.	
		New runs usually processed and conditions uploaded in < 1 day.	
		Procedure is still not fully automatized. A lot of work is being done to have this step fully automatize in T0. Need to maintain several DB conditions.	
		The beam spot can be reprocessed like in the case when a new tracker alignment is available.	

BeamSpot Status

pg. 2

Francisco Yumiceva